Offline Signature Identification by Fusion of Multiple Classifiers using Statistical Learning Theory
نویسندگان
چکیده
This paper uses Support Vector Machines (SVM) to fuse multiple classifiers for an offline signature system. From the signature images, global and local features are extracted and the signatures are verified with the help of Gaussian empirical rule, Euclidean and Mahalanobis distance based classifiers. SVM is used to fuse matching scores of these matchers. Finally, recognition of query signatures is done by comparing it with all signatures of the database. The proposed system is tested on a signature database contains 5400 offline signatures of 600 individuals and the results are found to be promising.
منابع مشابه
Use of the Shearlet Transform and Transfer Learning in Offline Handwritten Signature Verification and Recognition
Despite the growing growth of technology, handwritten signature has been selected as the first option between biometrics by users. In this paper, a new methodology for offline handwritten signature verification and recognition based on the Shearlet transform and transfer learning is proposed. Since, a large percentage of handwritten signatures are composed of curves and the performance of a sig...
متن کاملFusion of Multiple Matchers Using SVM for Offline Signature Identification
This paper uses Support Vector Machines (SVM) to fuse multiple classifiers for an offline signature system. From the signature images, global and local features are extracted and the signatures are verified with the help of Gaussian empirical rule, Euclidean and Mahalanobis distance based classifiers. SVM is used to fuse matching scores of these matchers. Finally, recognition of query signature...
متن کاملA comparison of SVM and HMM classifiers in the off-line signature verification
The SVM is a new classification technique in the field of statistical learning theory which has been applied with success in pattern recognition applications like face and speaker recognition, while the HMM has been found to be a powerful statistical technique which is applied to handwriting recognition and signature verification. This paper reports on a comparison of the two classifiers in off...
متن کاملتولید خودکار الگوهای نفوذ جدید با استفاده از طبقهبندهای تک کلاسی و روشهای یادگیری استقرایی
In this paper, we propose an approach for automatic generation of novel intrusion signatures. This approach can be used in the signature-based Network Intrusion Detection Systems (NIDSs) and for the automation of the process of intrusion detection in these systems. In the proposed approach, first, by using several one-class classifiers, the profile of the normal network traffic is established. ...
متن کاملOffline Language-free Writer Identification based on Speeded-up Robust Features
This article proposes offline language-free writer identification based on speeded-up robust features (SURF), goes through training, enrollment, and identification stages. In all stages, an isotropic Box filter is first used to segment the handwritten text image into word regions (WRs). Then, the SURF descriptors (SUDs) of word region and the corresponding scales and orientations (SOs) are extr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1003.5865 شماره
صفحات -
تاریخ انتشار 2010